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Positivity preserving non-Markovian master equations
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~Received 10 August 2000!

A general class of integrodifferential non-Markovian master equations is developed which is representative
of the dynamics of small subsystems interacting with open reservoirs with memory. Conditions which guar-
antee positivity of the subsystem reduced density are established.

PACS number~s!: 02.50.2r
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Master equation approaches remain an important tool
predicting the quantum mechanical dynamics of small s
systems interacting with open reservoirs. More rigorous
proaches, such as the Feynman-Vernon influence functi
method@1–3#, while preferable in principle, suffer the disad
vantage that they can at present only be applied to sim
model systems such as the spin-boson model@2,4#. Numeri-
cal methods for calculating the influence functionals of m
general reservoirs are still in the early stages of developm
@5#. Applications of the exact Nakajima-Zwanzig mast
equation@6# are also hampered by high computational cos
Approximate master equation approaches are often the
method available for application to systems of current
perimental interest, and efforts to improve the accuracy
these equations are therefore ongoing.

The issue of positivity has drawn the most attention. M
trix elementŝ fur(t)uf& of the subsystem densityr(t) are
occupation probabilities, and they should be positive for a
statef. For some initial densitiesr(0) the popular Redfield
master equation@7# is known to produce time evolving den
sitiesr(t) which violate positivity. Slipped initial conditions
@i.e., specialr(0)# correct this problem for the spin-boso
system@8,9#, but have not been shown to work in gener
The only master equations which are known to produce p
tive r(t) for all r(0) are of the completely positive dynam
cal semigroup~CPDS! form @10,11#. This class of equations
is very general and includes master equations derived
many different ways@12#. All CPDS equations have the form
@10,11#

dr~ t !/dt52 iLr~ t !2tLDr~ t !, ~1!

whereL is a nondissipative Liouville operator,

Lr5
1

\
@H,r#, ~2!

andLD is a positive semidefinite Lindblad operator@11#:

LDr5
1

\2 (
m,n

Cm,n$@rSn ,Sm#1@Sn ,Smr#%. ~3!

Here H is an effective subsystem Hamiltonian,t is the re-
laxation time of the reservoir, the Hermitian operatorsSm
mediate interactions of the subsystem with the reservoir,
Cm,n is a positive definite Hermitian matrix.
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The Redfield and CPDS master equations share a c
mon limitation: they can only be applied when the reserv
relaxes to equilibrium much more quickly than the su
system. Situations where this separation of time scales
not exist include relatively slow processes such as elec
transfer in biological molecules@13#, destruction of local ori-
entational order in supercooled water@14#, and vibrational
relaxation of ions in solution@15#. Breakdown of this sepa
ration of time scales is also characteristic of faster proces
such as chemical reactions in solution. Approximate ma
equations therefore need to be, and are being@2,4,16–19#,
developed for this non-Markovian regime.

Here we construct a general class of non-Markovian m
ter equations, analogous to the Markovian CPDS equa
~1!, and establish conditions which guarantee positivity
the subsystem densityr(t). When the reservoir relaxation
time is comparable to the time scale of the subsystem
namics, information about the history of the subsystem
stored in the phases of subsystem-reservoir interac
modes. Because the interaction modes influence the
system, the history of the subsystem plays a role in determ
ing its future. Thus, from a mathematical perspective, ma
equations in the non-Markovian regime must take the fo
of integrodifferential equations. A promising class of su
able integrodifferential equations can be obtained by
straightforward generalization of CPDS theory,

dr~ t !/dt5 f ~ t !2 iLr~ t !2E
0

t

dt8W~ t2t8!LDr~ t8!, ~4!

whereL is the nondissipative Liouville operator,@Eq. ~2!#,
and LD is the dissipation operator@Eq. ~3!#. Equations like
Eq. ~4! can be viewed as approximations to the ex
Nakajima-Zwanzig equation@6#. W(t) is a memory function
which weights the integral over the history of the subsyste
while the Hermitian operatorf (t) is an inhomogeneous term
introduced to include the effects of initial subsystem
reservoir correlation@19#. If *0

`dt W(t)5t,` and if f (t) is
zero outside the initial non-Markovian regime, then Eq.~4!
reduces to CPDS form@Eq. ~1!# at long times. Performing a
trace over both sides of Eq.~4! yields d Tr r(t)/dt
5Tr f (t), and so if Trf (t)50 then probability is conserved
It is also straightforward to show thatr(t) andr†(t) satisfy
the same equation with the same initial condition, and the
fore the solutions of Eq.~4! are Hermitian operators. Thu
Eq. ~4! has a number of important physical properties.
8808 ©2000 The American Physical Society
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The fact that Eq.~4! reduces to CPDS form at long tim
proves useful for establishing positivity criteria. Definin
M (t)5td(t)2W(t), Eq. ~4! can be rewritten in the form

dr~ t !/dt5 f ~ t !2~ iL 1tLD!r~ t !1E
0

t

dt8M ~ t2t8!LDr~ t8!,

~5!

where we have separated out the generator2( iL 1tLD) of
the long time Markovian dynamics. SinceL andLD do not in
general commute, it would be easier to analyze Eq.~5! if we
could treat the second and third terms on the right-hand
independently. This can be done by converting the integ
differential equation~5! to a larger set of differential equa
tions. Defining a new operatorx(t,u) which depends on
time t, and a new timelike variableu,

d

dt S r~ t !

x~ t,u!
D 5S 2~ iL 1tLD! d0

M ~u!LD
]

]u
D S r~ t !

x~ t,u!
D ,

where the usual initial conditions apply forr(t) and
x(0,u)5 f (u). The linear functionald0 is defined via
d0g(u)5g(0). Theequivalence of

dr~ t !

dt
52~ iL 1tLD!r~ t !1d0x~ t,u!, ~6!

dx~ t,u!

dt
5M ~u!LDr~ t !1

]x~ t,u!

]u
~7!

to Eq. ~5! can be easily established. Solving Eq.~7! for
x(t,u) in terms ofr(t) gives

x~ t,u!5et]/]ux~0,u!1E
0

t

dt8e(t2t8)]/]uM ~u!LDr~ t8!

~8!

5 f ~ t1u!1E
0

t

dt8M ~ t2t81u!LDr~ t8!, ~9!

from which it then follows that

d0x~ t,u!5 f ~ t !1E
0

t

dt8M ~ t2t8!LDr~ t8!. ~10!

Substituting this result into Eq.~6! then gives Eq.~5!. Thus
Eqs. ~8! and ~9! are equivalent to Eq.~5!, but have a more
convenient form. This method of converting integrodiffere
tial equations to differential equations, first introduced
Chen and Grimmer@20#, is closely related to thet, t8
method, which is used to solve the Schro¨dinger equation for
time-dependent Hamiltonians@21#.

The solutions of Eqs.~6! and ~7! can be expressed as
propagator of exponential form acting on the initial con
tions,

S r~ t !

x~ t,u!
D 5expF S 2~ iL 1tLD! d0

M ~u!LD
]

]u
D tG S r~0!

f ~u!
D ,
e
-

-

which allows us to use methods developed for the propag
of the Schro¨dinger equation. Applying the Trotter produc
formula @22#,

S r~ t !

x~ t,u!
D 5 lim

N→`
H expF S 2~ iL 1tLD! 0

0 0D t

NG
3expF S 0 d0

M ~u!LD
]

]u
D t

NG J N

S r~0!

f ~u!
D ,

and the desired separation of Markovian and non-Markov
evolutions is achieved.

Since the CPDS propagatore2( iL 1tLD)t preserves positiv-
ity, we also know that

expF S 2~ iL 1tLD! 0

0 0D tG5S e2( iL 1tLD)t 0

0 1D
preserves positivity. Thus, Eq.~5! will preserve positivity if
the operator

expF S 0 d0

M ~u!LD
]

]u
D tG

preserves positivity, and we may thus confine our attent
to the simpler integrodifferential equation

dr~ t !/dt5 f ~ t !1E
0

t

dt8M ~ t2t8!LDr~ t8! ~11!

generated by this operator.
Equations like Eq.~11! were studied by Pru¨ss @23#, who

showed that solutions of Eq.~11! will be positive if the func-
tion

a~ t !5E
0

t

dt8M ~ t8!5t2E
0

t

dt8W~ t8! ~12!

is ~i! positive or~ii ! nonincreasing,~iii ! if log a(t) is convex
„i.e., a(t)@d2a(t)/dt2#2@da(t)/dt#2>0…, and~iv! if f (t) is
positive. Clearlya(t) will be positive and nonincreasing i
W(t) is positive and nonincreasing, conditions consist
with the role ofW(t) as a memory function.

We now explain how these conditions arise. Lapla
transforming both sides of Eq.~11!—and denoting the
Laplace transforms ofM (t), a(t), f (t), andr(t) by M̃ (z),
ã(z), f̃ (z), and r̃(z)—one can show that

r̃~z!5@z2M̃ ~z!LD#21@r~0!1 f̃ ~z!#. ~13!

The trick now is to rewrite

@-z2M̃ ~z!LD#215E
0

`

dt8e2[z2M̃ (z)LD] t8 ~14!

5E
0

`

dt eLDth̃~z,t!, ~15!
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where t5t8/M̃ (z) and h̃(z,t)5e2zt/M̃ (z)/M̃ (z)
5e2t/ã(z)/zã(z). Combining Eqs.~13! and ~15!, one can
show that

r~ t !5S~ t !r~0!1E
0

t

dt8S~ t2t8! f ~ t8!, ~16!

where

S~ t !5E
0

`

dteLDth~ t,t! ~17!

is the inverse Laplace transform of Eq.~15!, and h(t,t) is
the inverse Laplace transform ofh̃(z,t). Now, clearly,eLDt

preserves positivity, sinceLD is of Lindblad type@11#, and
so if h(t,t) is positive for all t, and t then S(t) will be
positive. A necessary and sufficient condition forh(t,t) to
be positive~Bernstein’s theorem@24#! is thath̃(z,t) be com-
pletely monotonic,@i.e., (21)n(dn/dzn)h̃(z,t)>0, for z
P(0,̀ ). Prüss @23# showed that~i!–~iii ! are sufficient to
guarantee thath̃(z,t) is completely monotonic with respec
to z. Finally, if S(t) preserves positivity, then solutions o
Eq. ~16! will be positive if f (t) is positive.

In summary, if requirements~i!–~iv! are satisfied, then the
operator

expF S 0 d0

M ~u!LD
]

]u
D tG

preserves positivity. Both the Markovian and non-Markovi
evolutions then preserve positivity, and hence their prod
A.

v.

a-

th
t

expF S 2~ iL 1tLD! 0

0 0D tGexpF S 0 d0

M ~u!LD
]

]u
D tG

preserves positivity. Finally, it follows that the limit

lim
N→`

H expF S 2~ iL 1tLD! 0

0 0D t

NG
3expF S 0 d0

M ~u!LD
]

]u
D t

NG J N

must also preserve positivity.
Thus, the results of Pru¨ss@23# for Eq. ~11! can be readily

extended to Eq.~5!, and therefore equations like Eq.~4! have
positive solutions if f (t) is positive and ifW(t) satisfies
conditions ~i!–~iii !. In addition, the condition that Trf (t)
50 must be satisfied, so that probability is conserved. T
we have shown that a large class of non-Markovian posi
ity preserving master equations can be constructed. S
several recently derived master equations@19,25# are of the
form of Eq. ~4!, this class of equations is worthy of furthe
study.
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